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ABSTRACT: Using the Weather Research and Forecasting Model, 80-member ensemble Kalman filter (EnKF) analyses

with 3-km horizontal grid spacing were produced over the entire conterminous United States (CONUS) for 4 weeks using

1-h continuous cycling. For comparison, similarly configured EnKF analyses with 15-km horizontal grid spacing were also

produced. At 0000 UTC, 15- and 3-km EnKF analyses initialized 36-h, 3-km, 10-member ensemble forecasts that were

verified with a focus on precipitation. Additionally, forecasts were initialized from operational Global Ensemble Forecast

System (GEFS) initial conditions (ICs) and experimental ‘‘blended’’ ICs produced by combining large scales from GEFS

ICs with small scales fromEnKF analyses using a low-pass filter. The EnKFs had stable climates with generally small biases,

and precipitation forecasts initialized from 3-km EnKF analyses were more skillful and reliable than those initialized from

downscaled GEFS and 15-km EnKF ICs through 12–18 and 6–12 h, respectively. Conversely, after 18 h, GEFS-initialized

precipitation forecasts were better than EnKF-initialized precipitation forecasts. Blended 3-km ICs reflected the respective

strengths of both GEFS and high-resolution EnKF ICs and yielded the best performance considering all times: blended

3-km ICs led to short-term forecasts with similar or better skill and reliability than those initialized from unblended 3-km

EnKF analyses and ;18–36-h forecasts possessing comparable quality as GEFS-initialized forecasts. This work likely

represents the first time a convection-allowing EnKF has been continuously cycled over a region as large as the entire

CONUS, and results suggest blending high-resolution EnKF analyses with low-resolution global fields can potentially unify

short-term and next-day convection-allowing ensemble forecast systems under a common framework.
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1. Introduction

Convection-allowing ensembles (CAEs) produce better

precipitation and severe weather forecasts than coarser-

resolution, convection-parameterizing ensembles (e.g., Clark

et al. 2009; Duc et al. 2013; Iyer et al. 2016; Schellander-Gorgas

et al. 2017), are operational at many weather forecasting offices

(e.g., Gebhardt et al. 2011; Peralta et al. 2012; Hagelin et al.

2017; Raynaud and Bouttier 2017; Jirak et al. 2018; Klasa et al.

2018), and have proven useful and valuable for various mete-

orological applications around the world (e.g., Xue et al. 2007;

Clark et al. 2012; Evans et al. 2014; Maurer et al. 2017; Zhang

2018; Cafaro et al. 2019; Porson et al. 2019; Schwartz et al.

2019). Thus, as computing power has increased, CAE domains

have gradually enlarged, with operational global CAEs on the

horizon.

While CAEs can be initialized by downscaling coarser-

resolution, convection-parameterizing analyses, convection-

allowing numerical weather prediction (NWP) models are

typically best when initialized from corresponding convection-

allowing analyses, particularly for short-term forecasts (e.g.,

Ancell 2012; Harnisch and Keil 2015; Johnson et al. 2015;

Johnson and Wang 2016; Raynaud and Bouttier 2016;

Schwartz 2016; Gustafsson et al. 2018). Therefore, to produce

the best possible CAE forecasts over ever-expanding domains,

convection-allowing data assimilation (DA) systems over large

areas are needed to provide optimal initial conditions (ICs).

However, there are obstacles to implementing convection-

allowing DA systems over domains large enough to resolve

mesoalpha- to synoptic-scale features, especially when using

state-of-the-science ensemble-based DA algorithms like the

ensemble Kalman filter (EnKF; Evensen 1994; Houtekamer

and Zhang 2016), which produces flow-dependent analysis

ensembles and has become popular for initializing CAEs

(e.g., Jones and Stensrud 2012; Melhauser and Zhang 2012;

Schumacher and Clark 2014; Schwartz et al. 2014, 2015a,b,

2019). One challenge is simply computational expense, which

grows directly with domain size,1 and accordingly, most

convection-allowing EnKFs and their associated CAE fore-

casts have relatively small domains centered on a single

European country (e.g., Schraff et al. 2016; COSMO 2020)

or a small portion of the conterminous United States

(CONUS). For example, NOAA’s experimental ‘‘Warn-on-

Forecast’’ (WoF; Stensrud et al. 2009, 2013) system, initial-

ized from 36-member 3-km EnKF analyses, covers less than

Corresponding author: Craig Schwartz, schwartz@ucar.edu

1Mixed-resolution DA systems (e.g., Gao and Xue 2008;

Rainwater and Hunt 2013; Li et al. 2015) possessing both

convection-allowing and convection-parameterizing resolution

components can lessen costs and make large-domain convec-

tion-allowing analyses more feasible (e.g., Schwartz 2016;

Rogers et al. 2017).
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1000 km 3 1000 km (Wheatley et al. 2015; Jones et al. 2016,

2018, 2020; Skinner et al. 2018).

Fortunately, computing challenges can be overcome with

increased resources, and recently, several studies initialized

CAE forecasts from 40-member EnKF analyses with 3-km or

finer horizontal grid spacing over the entire CONUS (Duda

et al. 2019; Gasperoni et al. 2020; Johnson et al. 2020).

Similarly, NOAA’s real-time, experimental High-Resolution

Rapid Refresh Ensemble (HRRRE) is initialized from

CONUS-spanning, 3-km, 36-member EnKF analyses (Dowell

et al. 2016; Ladwig et al. 2018). However, 36–40-member

EnKFs are likely smaller than desirable, considering that op-

erational global EnKFs run by the United States and Canada,

respectively, have 80 and 256 members, and generally, EnKFs

benefit from larger ensembles (e.g., Zhang et al. 2013;

Houtekamer et al. 2014).

But, even with unlimited resources, there are fundamental

scientific concerns that must be addressed to develop stable,

high-quality, convection-allowing EnKFs over large re-

gional domains, especially in continuously cycling limited-area

EnKFs where external models are relegated to providing

boundary conditions. In particular, model physics deficiencies

can lead to accumulation of biases throughout EnKF DA cy-

cles, potentially degrading analysis system performance and

subsequent forecasts (e.g., Torn and Davis 2012; Romine et al.

2013; Cavallo et al. 2016; Wong et al. 2020). Although all

continuously cycling limited-area EnKFs are prone to bias

accumulation, this issue may be exacerbated as both model

resolution and domain size increase: biases may accumulate

more in high-resolution EnKFs than low-resolution EnKFs

because of rapid small-scale error growth (e.g., Lorenz 1969;

Zhang et al. 2003; Hohenegger and Schär 2007; Judt 2018), and
EnKFs over large domains may suffer from bias accumulations

more than EnKFs over small domains because of reduced in-

fluence from lateral boundaries provided by potentially less

biased global models (e.g., Warner et al. 1997; Romine et al.

2014; Schumacher and Clark 2014).

Given these scientific and computing challenges, operational

convection-allowing continuously cycling EnKFs and atten-

dant CAEs over Europe have small domains (e.g., Schraff et al.

2016; COSMO 2020), while large-domain convection-allowing

EnKFs over the CONUS (e.g., Duda et al. 2019; Gasperoni et al.

2020; Johnson et al. 2020; HRRRE) employ ‘‘partial cycling’’

strategies that periodically discard convection-allowing analysis

cycles and replace them with coarser-resolution, large-scale

external analyses in hopes of tempering bias accumulations

(e.g., Hsiao et al. 2012; Benjamin et al. 2016; Wu et al. 2017).

This partial cycling approach over the CONUS seems justified,

as Schwartz et al. (2020) showed that a limited-area continu-

ously cycling EnKFwith convection-parameterizing resolution

did not initialize better CAE precipitation forecasts over the

CONUS than downscaled global analyses.

Nonetheless, as discussed at length by Schwartz et al. (2019),

continuously cycling EnKFs have many attractive properties

for CAE initialization, including the ability to diagnose model

biases while simultaneously producing flow-dependent ICs

that are dynamically consistent with and span all possible re-

solvable scales of the convection-allowing forecast model.

Thus, despite formidable challenges, it is desirable to further

explore and develop continuously cycling EnKFs over large

geographic areas at convection-allowing resolutions for CAE

initialization purposes.

Accordingly, we produced continuously cycling, 80-member,

3-km EnKF analyses with a 1-h cycling period for 4 weeks

over a computational domain spanning the entire CONUS.

EnKF analysis ensembles then initialized 36-h, 3-km, 10-member

CAE forecasts. For comparison, 3-kmCAE forecasts were also

initialized by downscaling both 15-km EnKF analyses and

global ICs produced for NCEP’s operational Global Ensemble

Forecast System (GEFS; Zhou et al. 2017). The impact of as-

similating radar observations into the 3-km EnKF was also

assessed. Relative to the EnKF described in Schwartz et al.

(2020), our EnKFs used more advanced observation process-

ing, an upgradedNWPmodel, and a shorter cycling period, and

inclusion of 3-km EnKF DA was also new. To our knowledge,

this work presents the first time convection-allowing continu-

ously cycling EnKF analyses have been produced over the

entire CONUS.

Results indicated benefits of EnKF-initialized forecasts with

respect to GEFS-initialized forecasts diminished with forecast

length, presumably because large-scale fields were better rep-

resented in GEFS ICs and became more important at longer

forecast ranges. These findings motivated experimentation

with a ‘‘blending’’ approach combining large-scale fields from

an external (e.g., global) NWPmodel with small-scale fields from

a limited-area model, which can be achieved by augmenting a

variational cost function with a global model constraint (e.g.,

Guidard and Fischer 2008; Dahlgren and Gustafsson 2012;

Vendrasco et al. 2016; Keresturi et al. 2019) or using filtering to

perform scale separation (e.g.,Yang 2005;Wang et al. 2011;Caron

2013; H. Wang et al. 2014; Y. Wang et al. 2014; Hsiao et al. 2015;

Zhang et al. 2015; Feng et al. 2020); we used a low-pass filter

to combine large scales from GEFS ICs with small scales

from EnKF analyses. These previous studies collectively

suggested blended limited-area ICs improved forecasts

compared to those initialized from unblended limited-area

ICs, including for a CAE within a perturbed-observation

variational DA framework (Keresturi et al. 2019). However,

our application of blending within the context of a large-

domain convection-allowing continuously cycling EnKF

was unique, and, as described below, blending global fields

with high-resolution EnKF analyses can potentially unite

short-term and next-day (18–36-h) CAE forecast systems

under a common framework.

2. Model configurations, EnKF settings, and
experimental design

a. Forecast model

All forecasts were produced by version 3.9.1.1 of the

Advanced Research Weather Research and Forecasting

(WRF) Model (Skamarock et al. 2008; Powers et al. 2017)

over a nested computational domain (Fig. 1a). The horizontal

grid spacing was 15 km in the outer domain and 3 km in the

nest, and time steps were 60 and 12 s in the 15- and 3-km
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domains, respectively. Both domains had 51 vertical levels

distributed as in the Rapid Refresh model (Benjamin et al.

2016) with a 15-hPa top. Physical parameterizations were

identical across the two domains (Table 1), except no cumulus

parameterization was employed on the convection-allowing

3-km grid, and all ensemble members used common physics

and dynamics options.

b. EnKF DA systems

1) ENKF EXPERIMENTS AND CONFIGURATIONS

TwoprimaryDAexperimentswith 80-member ensembleswere

performedusing an ensemble adjustmentKalmanfilter (Anderson

2001, 2003; Anderson and Collins 2007), a type of EnKF, as

implemented in the Data Assimilation Research Testbed

FIG. 1. (a) Computational domain. Horizontal grid spacing was 15 km in the outer domain (4153 325 points) and 3 km in the nest (15813
986 points). Objective precipitation verification only occurred over the red shaded region of the 3-kmdomain (CONUSeast of 1058W). (b) Total

accumulated Stage IV (ST4) precipitation (mm) over the verification region between 0000 UTC 25 Apr and 1200 UTC 21 May 2017,

which encompasses all possible valid times of the 36-h forecasts. (c)–(e) The 500-hPa wind speed (shaded; kt; 1 kt ’ 0.51 m s21) and

height (m; contoured every 40m) from Global Forecast System analyses valid at 0000 UTC (c) 25 Apr, (d) 1 May, and (e) 14 May 2017.

TABLE 1. Physical parameterizations for all WRF Model forecasts. Cumulus parameterization was only used on the 15-km domain.

Physical parameterization WRF Model option References

Microphysics Thompson Thompson et al. (2008)

Longwave and shortwave radiation Rapid Radiative Transfer Model for Global

ClimateModels (RRTMG)with ozone and

aerosol climatologies

Mlawer et al. (1997); Iacono et al. (2008);

Tegen et al. (1997)

Planetary boundary layer Mellor–Yamada–Janjić (MYJ) Mellor and Yamada (1982); Janjić

(1994, 2002)

Land surface model Noah Chen and Dudhia (2001)

Cumulus parameterization Tiedtke (15-km domain only) Tiedtke (1989); Zhang et al. (2011)
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(DART; Anderson et al. 2009) software. The first EnKF ex-

periment only produced analyses on the 15-km domain

(Fig. 1a), and the 3-km domain was removed during WRF

Model advances between EnKF analyses. Conversely, the

second EnKF experiment produced separate, independent

analyses on both the 15- and 3-km domains, with nested WRF

Model forecasts between EnKF analyses. During these nested

forecasts, which were ;45 times more expensive than the

single-domain 15-km model advances, one-way feedback was

employed such that the 15-km EnKF DA system was un-

affected by the 3-kmEnKFDA system (i.e., 15-km fields in the

nested- and single-domain EnKF DA systems were identical),

permitting a clean comparison of analysis and forecast sensi-

tivity to EnKF resolution. The 15- and 3-km EnKFs updated

identical state variables (Table 2), with hydrometers included

in anticipation of experimentation with radar DA (section 4c).

Initial 80-member ensembles were produced by inter-

polating the 0.258NCEPGlobal Forecast System (GFS) analysis

at 0000 UTC 23 April 2017 onto the 15-km domain and adding

random, correlated, Gaussian noisewith zeromean (e.g., Barker

2005; Torn et al. 2006) drawn from background error covari-

ances provided by the WRF Model’s DA system (Barker et al.

2012). The randomly produced 15-km ensemble was then

downscaled onto the 3-km grid to initialize the 3-km EnKF,

ensuring initial 15- and 3-km ensembles were identical aside

from interpolation errors. These randomly generated ensem-

bles served as prior (before assimilation) ensembles for the first

EnKF analyses, and the posterior (after assimilation) ensem-

bles at 0000 UTC 23 April 2017 initialized 1-h, 80-member

ensemble forecasts that became prior ensembles for the next

EnKF analyses at 0100 UTC 23 April 2017. Analysis–forecast

cycles with a 1-h period continued until 0000UTC 20May 2017

(649 total DA cycles). This experimental period (23 April–

20 May 2017) was similar to that in Schwartz (2019), which

featured several heavy precipitation episodes primarily driven

by strong synoptic forcing, a broad overall precipitation max-

imum centered in Missouri (Fig. 1b), and a variety of flow

patterns (Figs. 1c–e).

During EnKF cycles, soil states freely evolved for each

member, sea surface temperature was updated daily from

NCEP’s 0.128 analyses (e.g., Gemmill et al. 2007), and identical

randomly perturbed lateral boundary conditions (LBCs) were

applied to the 15-km domain in each DA system, with per-

turbations for individual members generated using the same

method to produce initial ensembles at 0000 UTC 23 April

2017. The first two days of cycling were regarded as spinup.

Spurious correlations due to sampling error were mitigated

with a sampling error correction scheme (Anderson 2012) and

covariance localization [Eq. (4.10) of Gaspari and Cohn

(1999)]. Vertical localization limited analysis increments to

61.0 scale height (in log pressure coordinates) away from an

observation in both the 15- and 3-km EnKFs. However, hori-

zontal localizations differed depending on EnKF resolution:

15-km EnKF analysis increments were forced to zero 1280 km

from an observation, but to lessen expense and complete 3-km

EnKF analyses quickly enough for operational applications,

3-km EnKF analysis increments were forced to zero 640 km

from an observation, except rawinsonde observations could

produce increments up to 1280 km away (Table 2). The vertical

and 15-kmEnKF horizontal localization distances were guided

by previous experiences with DART (e.g., Romine et al. 2013,

2014; Schwartz et al. 2015a,b, 2019), and while our 3-km EnKF

horizontal localization distances were similar to Johnson et al.

(2015), they were larger than those in many other convection-

allowing EnKFs (e.g., Harnisch and Keil 2015; Yussouf et al.

2015, 2016; Degelia et al. 2018; Gasperoni et al. 2020; Jones et al.

2020).However, these studies with smaller localization distances

either used partial cycling strategies or only continuously cycled

for a short period (days), andwe believed that larger localization

distances were necessary to provide stronger observational

constraints in a large-domain continuously cycling 3-km EnKF.

EnKF spread was maintained by applying covariance infla-

tion to posterior state-space perturbations about the ensemble

mean following Whitaker and Hamill (2012)’s ‘‘relaxation-to-

prior spread’’ algorithmwith an inflation parameter a5 1.06 in

both the 15- and 3-km EnKFs. As noted by Schwartz and

TABLE 2. Summary of EnKF configurations.

Parameter 15-km EnKF 3-km EnKF

Ensemble size 80 members

Updated WRF Model variables Zonal and meridional wind components; perturbation geopotential

height, potential temperature, and dry surface pressure; and water

vapor, graupel, snow, and rain mixing ratios

Localization function Eq. (4.10) from Gaspari and Cohn (1999)

Horizontal localization full width 1280 km 640 km, except 1280 km for rawinsonde

observations

Vertical localization full width 1.0 scale height

Inflation method Posterior relaxation-to-prior-spread [RTPS; Whitaker and

Hamill (2012)]

Inflation factor (a) 1.06

Sampling error correction Anderson (2012)

Horizontal thinning for aircraft and satellite-tracked

wind observations

30 km 15 km

Vertical thinning for aircraft and satellite-tracked wind

observations

25 hPa
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Liu (2014), a . 1 meant inflated posterior spread was greater

than prior spread, which, while counterintuitive, was necessary

to maintain reasonable spread given absence of other spread-

inducing methods like multiphysics ensembles, additive infla-

tion, or stochastic physics. Several iterative weeklong trials

with 15-kmEnKFs were performed to settle on a5 1.06, which

provided acceptable prior observation-space statistics for the

assumed observation errors (section 3).

2) OBSERVATIONS

Although DART has observation processing capabilities,

we instead used NCEP’s operational Gridpoint Statistical

Interpolation (GSI) DA system (Kleist et al. 2009; Shao et al.

2016) for observation processing, which, relative toDART, has

more sophisticated quality control, observation thinning, and

observation error assignment capabilities. In addition, GSI’s

observation operators were used instead of DART’s built-in

observation operators to produce model-simulated conven-

tional observations. Initially specified observation errors were

based on the HRRRE and identical in the 15- and 3-kmEnKFs

(Fig. 2; Table 3); GSI adjusted these errors to produce ‘‘final’’

observation error standard deviations so actually used in the

assimilation, as described by several texts (e.g., Schwartz and

Liu 2014; Developmental Testbed Center 2016; Johnson and

Wang 2017). These adjustments often inflated initially speci-

fied observation errors (Fig. 2).

Time windows for the observation platforms varied and

were based onRapidRefreshmodel (Benjamin et al. 2016) and

FIG. 2. Initially specified (solid lines) and final (after GSI adjustment; dashed lines) observation error standard

deviations as a function of pressure for (a) wind (m s21), (b) temperature (K), (c) relative humidity (%), and

(d) surface pressure (hPa) observations with vertically varying errors averaged over all observations assimilated

between 0000 UTC 25 Apr and 0000 UTC 20May 2017 (inclusive) by both the 15- and 3-km EnKFs. If a particular

observation type was not assimilated at a certain pressure level, no value is plotted.
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HRRRE settings, with generally smaller windows for fre-

quently reporting, stationary platforms, like METAR obser-

vations (Table 3), and all observations were assumed valid at

the analysis time. Moisture observations were initially pro-

cessed as specific humidity, but because GSI requires moisture

observation errors in terms of relative humidity, moisture ob-

servations were ultimately converted to and assimilated as

relative humidity using the prior ensemble mean saturation

specific humidity. Satellite-tracked wind and aircraft observa-

tions were thinned such that remaining observations were

spaced 25 hPa apart vertically and 30 and 15 km apart hori-

zontally in the 15- and 3-km EnKFs, respectively (Table 2);

these different horizontal thinnings were chosen so the 15- and

3-km EnKFs had equal numbers of satellite-tracked wind and

aircraft observations within their respective horizontal localiza-

tion radii. Radiance observations were not assimilated since they

generally yield small impacts over the CONUS (Lin et al. 2017)

given the multitude of available conventional observations.

Additionally, the EnKFs did not assimilate radar observations,

although an auxiliary experiment was performed where radar

observations were assimilated with a 3-km EnKF (section 4c).

Observations were subject to numerous quality control proce-

dures, such as excluding observations from specific aircraft with

known biases and applying an ‘‘outlier check’’ to reject observa-

tions whose ensemble mean innovations2 were .aso, where a

varied from 2.5 to 10 depending on observation type and platform

(Table 3). These a were generally fairly lenient and allowed

most observations to pass the outlier check, which, along with

our relatively large localization distances, reflected a phi-

losophy that we wanted observations to heavily constrain

the 1-h WRF Model forecasts between EnKF analyses.

Overall, the EnKFs assimilated 30 000–100 000 conventional

observations each cycle, with a relative dearth of overnight

observations due to fewer commercial flights and maxima at

0000 and 1200 UTC reflecting the majority of rawinsonde

launches (Fig. 3). Ultimately, GSI-provided observations, final

observation errors, and priormodel-simulated observations for

each ensemble member were ingested directly into DART for

use in EnKF DA.

3) FORECAST INITIALIZATION

EnKF analysis ensembles initialized 36-h 10-member en-

semble forecasts over the nested computational domain

(Fig. 1a) at 0000 UTC between 25 April and 20 May 2017

(inclusive; 26 forecasts). Although 80 EnKF analysis members

were available, due to computing constraints, 36-h forecasts

were only initialized from members 1–10; 10-member CAEs

are sufficient to provide skillful and valuable probabilistic

forecasts (e.g., Clark et al. 2011, 2018; Schwartz et al. 2014) and

similar in size as the HRRRE and NCEP’s operational High-

Resolution Ensemble Forecast system (Jirak et al. 2018).

Choosing members 1–10 was effectively the same as randomly

selecting 10 members since all ensemble members had identi-

cal configurations (e.g., Schwartz et al. 2014). In principle, free

forecasts could have been initialized every hour, but given fi-

nite resources, forecasts were solely initialized at 0000 UTC,

TABLE 3. Conventional observations that were assimilated and their outlier check thresholds, time windows, and initially specified ob-

servation error standard deviations.

Observing platform Observation type Initial observation error Outlier check threshold (a) Time window (h)

Rawinsonde Surface pressure Fig. 2d 5 1.5

Temperature Fig. 2b 7 1.5

Relative humidity Fig. 2c 7 1.5

Wind Fig. 2a 10 1.5

Aircraft Temperature Fig. 2b 7 0.75

Relative humidity Fig. 2c 7 0.75

Wind Fig. 2a 10 0.75

Wind profiler Wind Fig. 2a 5 0.4

Global positioning system radio

occultation (GPSRO)

Refractivity 1% of observation value 10 3.0

Infrared andwater vapor channel

satellite-tracked wind

Wind Fig. 2a 2.5 1.5

Ship and buoy Surface pressure 0.44 hPa 5 1.5

Temperature 0.8K 7 1.5

Relative humidity 3.9% 7 1.5

Wind 1.45m s21 5 1.5

SYNOP and METAR Surface pressure 0.54 hPa 5 0.25

Temperature 2.3K 5 0.25

Relative humidity 3.4% 7 0.25

Wind 1.2m s21 5 0.25

Oklahoma and West Texas

mesonet

Surface pressure 0.35 hPa 5 0.1

Temperature 1.5K 5 0.1

Relative humidity 4% 7 0.1

Wind 1.1m s21 5 0.1

2 The ‘‘innovation’’ is the difference between an observation and

the prior model-simulated observation.
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which allowed us to focus on both short-term and next-day

forecast periods featuring active convection.

When initializing 36-h forecasts from 15-km EnKF analyses,

the 3-km nest was initialized by downscaling 15-km EnKF

analyses onto the 3-km grid. Conversely, downscaling was

unnecessary to initialize 36-h forecasts from the 3-km EnKF;

3-km ICs were simply 3-km EnKF analysis members. For both

sets of EnKF-initialized 36-h forecasts, perturbation members

1–10 from the GEFS (Zhou et al. 2017) with 0.58 horizontal
grid spacing provided LBCs at 3-h intervals for the 15-km

domain, which in turn provided LBCs for the 3-km nest. While

random LBCs could have been used for the 36-h forecasts as in

the EnKF DA system, we believed it was more appropriate to

use flow-dependent LBCs for these longer unconstrained

forecasts.

c. Benchmark ensemble

To serve as a benchmark for the EnKF-initialized CAE

forecasts, 36-h forecasts on the nested grid (Fig. 1a) with the

configurations in section 2a were initialized by interpolating

0.58 ICs fromperturbationmembers 1–10 of theGEFS onto the

computational domain at 0000 UTC daily between 25 April

and 20 May 2017 (inclusive), with LBCs provided by GEFS

forecasts identically as in the EnKF-initialized CAEs. As

described by Zhou et al. (2017), GEFS ICs were produced by

adding 6-h forecast perturbations from a global EnKF DA

system (Whitaker and Hamill 2002) to ‘‘hybrid’’ variational-

ensemble analyses produced for NCEP’s deterministic GFS

(e.g., Wang and Lei 2014; Kleist and Ide 2015a,b). Relative to

the limited-area EnKF analyses, GEFS ICs were much

coarser but reflected assimilation of many more observations,

including satellite radiances. Overall, comparison of GEFS-

and EnKF-initialized CAE forecasts provides insight about

whether the vastly more expensive EnKF initialization pro-

cedure was warranted.

d. Blending

Based on performance of the EnKF- and GEFS-initialized

CAE forecasts (section 4b), additional ensemble ICs were

created by ‘‘blending’’ small scales from EnKF analyses

with large scales from GEFS ICs. Blending was solely

performed at 0000 UTC between 25 April and 20 May 2017

(inclusive) immediately after EnKF DA and before ini-

tializing 36-h CAE forecasts; blending was not employed

within the context of continuously cycling EnKFDA, as the

blended 0000 UTC fields were not used to initialize 1-h

WRF Model forecasts that served as priors for the next

DA cycle.

FIG. 3. Computational domain overlaid with observations assimilated by the 15-km EnKF during the (a) 0000, (b) 0600, (c) 1200,

and (d) 1800 UTC 27 Apr 2017 analyses. Values of N in the headers indicate the number of assimilated observations. The inner box

represents bounds of the 3-km domain; most observations located within the 3-km domain were also assimilated by the 3-km EnKF

at these times.
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Specifically, ICs from corresponding GEFS and EnKF en-

semble members were blended on both the 15- and 3-km

domains3 to create new initial ensembles using

xiblend 5 (EnKF
i
–EnKF

FILT,i
)1GEFS

FILT,i
, (1)

where xiblend represents the blended ICs for the ith ensemble

member, EnKFi is the EnKF analysis for the ith member, and

EnKFFILT,i and GEFSFILT,i are the low-pass filtered EnKF and

GEFS ICs for the ith member, respectively, for i 5 1, . . . , 10.

To perform the scale separation, a low-pass, sixth-order im-

plicit tangent filter (e.g., Raymond 1988; Raymond andGarder

1991) as implemented by several studies (e.g., Yang 2005;

H. Wang et al. 2014; Hsiao et al. 2015; Feng et al. 2020) and

given by

H(L)5 [11 tan26(pDx/L
x
) tan6(pDx/L)]21 (2)

was employed (Fig. 4), where Dx is the horizontal grid spacing

(either 15 or 3 km), L the wavelength, H(L) the scale-

dependent response function, and Lx a specified filter cutoff

(km) physically representing the spatial scale (wavelength)

where the blended ICs (e.g., xiblend) had equal contributions

fromGEFS and EnKF initial states [i.e., when L5Lx,H(L)5
0.5]. Blending was applied at all 51 vertical levels to zonal and

meridional wind components; perturbation geopotential

height, potential temperature, and dry surface pressure; and

water vapor mixing ratio, and the cutoff length was height and

variable invariant.

We produced blended ICs using filter cutoff lengths Lx of

640, 960, and 1280 km, guided by EnKF horizontal localization

lengths and previous work suggesting values between 640 and

1280 km were appropriate (e.g., H. Wang et al. 2014; Hsiao

et al. 2015; Feng et al. 2020). CAE forecasts initialized from

these three sets of blended ICs objectively had similar skill,

although Lx 5 960 km yielded slightly better results.

Therefore, results are shown only for the 960-km cutoff.

3. EnKF performance

To assess EnKF performance, we examined the observation-

space bias and relationship between the prior ensemble mean

root-mean-square error (RMSE) and ‘‘total spread,’’ the

square root of the sum of the observation error variance s2
o and

ensemble variance of the simulated observations (Houtekamer

et al. 2005). Ideally, the ratio of total spread to RMSE [termed

the consistency ratio (CR; Dowell andWicker 2009)] should be

near 1.0. To fairly compare the 15- and 3-km EnKFs, we re-

stricted this analysis solely to those observations assimilated by

both EnKFs, although overall findings were unchanged when

computing identical statistics with inhomogeneous samples.

We focused on aircraft and rawinsonde observations because

of their large impacts on springtime forecasts over the CONUS

(James and Benjamin 2017).

Ensemble mean additive biases (model minus observations)

and RMSEs aggregated over all prior ensembles (1-h forecasts)

between 0000 UTC 25 April and 0000 UTC 20 May 2017 (in-

clusive) were similar in the 15- and 3-km EnKFs with respect

to zonal wind and temperature observations at most levels

(Figs. 5a,b,d,e), while biases and RMSEs for moisture were

typically smaller in the 3-km EnKF (Figs. 5c,f). Magnitudes of

temperature biases were typically ,0.1K, except near the sur-

face and in the upper troposphere for rawinsonde observations

(Fig. 5a); the latter is consistent with other continuously cycling

EnKFs over the CONUS (e.g., Romine et al. 2013; Schumacher

and Clark 2014; Schwartz and Liu 2014; Cavallo et al. 2016;

Schwartz 2016) and likely due to closer fits to the more numer-

ous aircraft observations that may have systematically warm

biases compared to rawinsonde observations (Ballish and

Krishna Kumar 2008). That upper-tropospheric tempera-

ture biases relative to aircraft observations (Fig. 5d) were smaller

than and opposite the sign of temperature biases relative to ra-

winsonde observations (Fig. 5a) further supports this reasoning.

Prior total spreads were similar in both EnKFs (Fig. 5) and

CRs were usually between 0.8 and 1.2, although CRs suggest

FIG. 4. Amplitude response (y axis) of a sixth-order implicit

tangent filter as a function of wavelength (km) for a specified cutoff

length of 960 km. In the context of this study, the curve denotes the

contribution of GEFS ICs to blended ICs at a given wavelength

(e.g., for wavelengths where the amplitude response is 1, 100% of

the blended ICs at those wavelengths were from the GEFS). The

dashed vertical and solid horizontal lines illustrate how the am-

plitude response is 0.5 at the cutoff length.

3 It was unclear whether blending should be performed on just

the 3-km domain or on both the 15- and 3-km domains. While the

former perhaps enables a fairer comparison between forecasts

initialized from blended and unblended 3-km ICs, the latter

maintains consistency across both domains that intuitively seems

desirable. So, we experimented with both scenarios, which yielded

remarkably similar 36-h forecasts. Thus, forecast impacts of

blending were due to changes in 3-km ICs and not attributable to

modified LBCs for the 3-km domain provided by 15-km forecasts.

All results regarding blending are for the scenario where blending

occurred on both the 15- and 3-km domains.
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moisture observation errors could potentially be decreased.

While more spread may have been expected in the 3-km EnKF

because small-scale errors grow rapidly upscale (e.g., Lorenz

1969; Zhang et al. 2003; Hohenegger and Schär 2007), cumulus

parameterization in the 15-km DA system may have served as

an error source that compensated for missing storm-scale

structures, and assimilating copious observations each cycle

(Fig. 3) with fairly large localization distances highly con-

strained the 15- and 3-km EnKFs, limiting spread growth

during 1-h WRF Model integrations between analyses. In

balance, these factors potentially contributed to the similar

15- and 3-km prior spreads.

Overall, systematic biases were usually small and EnKF

performance appeared acceptable. Moreover, after the first

two days, prior total spread and ensemble mean biases were

steady throughout the cycles (Fig. 6), and observation re-

jection rates varied little with time (not shown). These re-

sults indicate the continuously cycling EnKFs maintained

stable climates, which is particularly noteworthy for the

3-km EnKF, as it has not previously been demonstrated

that a convection-allowing EnKF can be continuously cy-

cled over a large domain without deleterious consequences

like a drifting model climate or filter divergence [see

appendix A of Houtekamer and Zhang (2016) for a succinct

summary of filter divergence].

4. Precipitation forecast verification

Hourly accumulated precipitation forecasts were verified

against Stage IV (ST4) analyses (Lin and Mitchell 2005) pro-

duced at NCEP considered as ‘‘truth.’’ Objective evaluations

were performed over the CONUS east of 1058W (hereafter the

‘‘verification region’’; Fig. 1a), where ST4 analyses were most

robust (e.g., Nelson et al. 2016). For metrics requiring a

common grid for forecasts and observations, we used a

budget algorithm (e.g., Accadia et al. 2003) to interpolate

forecast precipitation to the ST4 grid (4.763-km horizontal

grid spacing). Otherwise, metrics were computed from na-

tive grid output.

The following statistics were aggregated over all twenty-six

3-km forecasts initialized at 0000 UTC.

a. Precipitation climatologies

To assess precipitation climatologies, aggregate domain-

total precipitation per grid point and fractional coverages of

1-h accumulated precipitation meeting or exceeding various

FIG. 5. Ensemble mean additive bias (model minus observations; short-dashed lines), ensemble mean RMSE (solid lines), total

spread (long-dashed lines), and consistency ratio (CR; solid lines with circles) for (a) rawinsonde temperature (K), (b) rawinsonde

zonal wind (m s21), (c) rawinsonde relative humidity (%), (d) aircraft temperature (K), (e) aircraft zonal wind (m s21), and

(f) aircraft relative humidity (%) observations aggregated over all prior ensembles (1-h forecasts) between 0000 UTC 25 Apr and

0000 UTC 20 May 2017 (inclusive). These statistics were computed for those observations assimilated by both the 15- and 3-km

EnKFs. Sample size at each pressure level is shown at the right of each panel. Vertical lines at x 5 0 and x 5 1 are references for

biases and CRs, respectively.
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accumulation thresholds (e.g., 2.5 mm h21) were calculated

on native grids over the verification region. Additionally,

spatial patterns of total precipitation over all 26 forecasts

were examined, which were similar in the various ensembles

and generally agreed with observations (e.g., Fig. 1b), in-

cluding the southwest–northeast-oriented maximum across

Missouri and adjacent areas. Although magnitudes of these

maxima differed across the ensembles, these differences

were manifested by the following domain-average statistics,

so spatial variations of precipitation climatologies are not

discussed further.

1) IMPACT OF ANALYSIS RESOLUTION

Differences between ensembles were largest over the first

12 h, when GEFS-initialized forecasts were spinning up pre-

cipitation from coarse 0.58 ICs.While this spinupmeantGEFS-

initialized forecasts underpredicted total precipitation (Fig. 7)

and areal coverages (Fig. 8) over the first 5 h, ultimately, the

spinup process yielded too much 6–12-h total precipitation and

excessive coverages $ 2.5mmh21. Forecasts initialized from

15-km EnKF analyses also overpredicted total precipitation

over the first 12 h, accompanied by excessive coverages for

thresholds $ 5.0mmh21.

Overall, forecasts initialized from unblended 3-km EnKF

analyses had precipitation climatologies best matching obser-

vations through 12 h, but there were shortcomings. For exam-

ple, although at 1 h, unblended 3-km EnKF analyses produced

forecasts with areal coverages closest to observations (Fig. 8),

coverages rapidly decreased between 2 and 3 h and were fur-

ther from those observed between 2 and 12 h for the 1.0 and

2.5 mm h21 thresholds (Figs. 8a,b) compared to forecasts

with 15-km or blended 3-km ICs, suggesting poor mainte-

nance of stratiform precipitation regions after initialization.

However, forecasts with unblended 3-km ICs had 6–12-h

areal coverages at the 5.0 mm h21 threshold well-matching

observations (Fig. 8c) and 2–6-h coverages at the 10.0–

50.0 mm h21 thresholds closer to observations than forecasts

with GEFS and 15-km EnKF ICs (Figs. 8d–f). Furthermore,

2–12-h domain-total precipitation was clearly best in fore-

casts with unblended 3-km ICs (Fig. 7).

Despite differences between the ensembles through 12 h,

domain-total precipitation and areal coverages were broadly

similar between 18 and 36 h, with too much total precipitation

(Fig. 7) and general underprediction and overprediction of

areal coverages at the 1.0 and 10.0–50.0mmh21 thresholds,

respectively (Figs. 8a,d–f). Collectively, for precipitation

FIG. 6. Prior (1-h forecast) total spread (long-dashed lines) and ensemble mean additive bias (model minus observations; short-

dashed lines) for (a) rawinsonde temperature (K), (b) rawinsonde zonal wind (m s21), (c) aircraft temperature (K), and (d) aircraft

zonal wind (m s21) observations between 150 and 1000 hPa as a function of time. In (c) and (d) values are plotted every hour

between 0000 UTC 23 Apr and 0000 UTC 20 May 2017 (inclusive) and smoothed with a 6-h running average, while in (a) and

(b) values are plotted every 12 h between 0000 UTC 23 Apr and 0000 UTC 20 May 2017 (inclusive) without smoothing. These

statistics were computed for those observations assimilated by both the 15- and 3-km EnKFs. The x-axis labels represent 0000 UTC

for a specific month and day in 2017 (e.g., the marker for ‘‘0511’’ denotes 0000 UTC 11 May 2017). Dashed lines at y 5 0 are for

reference.
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climatologies, these findings suggest benefits of convection-

allowing analyses relative to convection-parameterizing ana-

lyses are primarily confined to short-term forecasts and heavier

rainfall rates.

2) IMPACT OF BLENDING

With respect to forecasts initialized from unblended 3-km

EnKF analyses, forecasts with blended 3-km ICs (using a 960-km

cutoff) had similar 18–36-h areal coverages and total pre-

cipitation but higher domain-total precipitation and areal

coverages over the first 6–12 h that typically compared worse

to observations through 3 h (Figs. 7 and 8). Examination of

individual forecasts indicated blended 3-km ICs mostly en-

hanced 1–3-h forecast precipitation within and near precip-

itation entities also predicted by forecasts with unblended

3-km ICs and that widespread spurious features did not

cause the overprediction. This behavior is illustrated by the

forecast initialized at 0000 UTC 1 May 2017, which had

the largest difference of domain-total precipitation (e.g.,

Fig. 7) between member 1 in the CAEs with blended and

unblended 3-km ICs across all twenty-six 36-h forecasts (Fig. 9).

While both 1–3-h precipitation forecasts had similar spatial

patterns, blended ICs led to more numerous cells in places

with scattered rainfall, and these additional entities were

usually erroneous compared to observations (black and

gold circles in Fig. 9). Additionally, within features, the

forecast with blended ICs had heavier rainfall maxima than

ST4 observations and the forecast with unblended ICs (red

circles in Figs. 9b,c,e,f,h,i).

Thus, overall, it appears blending did not improve short-

term precipitation climatologies, likely due to imbalances

created by blending (e.g., Yang 2005; H. Wang et al. 2014).

Additional steps like digital filter initialization (DFI) applied

to blended ICs (e.g., Yang 2005) may potentially lessen these

imbalances, but DFI could result in spinups that are smoother

than desirable for short-term high-resolution NWP model

applications.

b. Ensemble precipitation verification

As in many studies, we used percentile thresholds to define

events (e.g., the 95th percentile, which selects the top 5% of

values), which removes bias and permits a thorough assess-

ment of spatial performance given a model’s climate (e.g.,

Roberts and Lean 2008; Mittermaier and Roberts 2010;

Mittermaier et al. 2013; Dey et al. 2014; Gowan et al. 2018;

Woodhams et al. 2018; Schwartz 2019). Our application of

percentile thresholds exactly followed section 5a(1) of

Schwartz (2019), where physical thresholds corresponding to

percentile thresholds were obtained separately for observa-

tions and each ensemble member on the ST4 grid for each

precipitation accumulation interval. These physical thresholds

were ultimately used to determine forecast and observed event

occurrence. To help interpret subsequent objective statistics,

mean physical thresholds corresponding to specific percentile

thresholds are provided in Fig. 10. As with areal coverages

(Fig. 8), the largest differences among the ensembles’ percen-

tiles were over the first 6–12 h.

After interpolating precipitation forecasts to the ST4

grid, a ‘‘neighborhood approach’’ (e.g., Theis et al. 2005;

Ebert 2008, 2009) was used to produce ‘‘neighborhood en-

semble probabilities’’ (NEPs; Schwartz et al. 2010; Schwartz

and Sobash 2017) that were ultimately verified. In short,

NEPs were computed at the ith grid point by averaging

point-based ensemble probabilities over all grid points

within the neighborhood of the ith point, which incorpo-

rates spatial uncertainty and reflects the inherent in-

accuracy of high-resolution NWP models at individual grid

points. We produced NEPs for neighborhood length scales

r between 5 and 200 km, which represented radii of circular

neighborhoods. Please see section 2a of Schwartz and

Sobash (2017) for more information about constructing

and verifying NEPs and Eqs. (1)–(3) in Schwartz (2019),

which explicitly describe NEP computation when using

percentile thresholds.

Statistical significance testing followed section 5a(3) of

Schwartz (2019). Specifically, a pairwise difference bootstrap

technique with 10 000 resamples was used to determine whether

aggregate differences between two ensembles’ statistics were

FIG. 7. Average 1-h accumulated precipitation (mm) per grid

point over all twenty-six 3-km forecasts and the verification region

(CONUS east of 1058W) computed on native grids as a function of

forecast hour. Red, blue, gold, and black shadings represent en-

velopes of the 10 members comprising the ensembles with 3-km

EnKF ICs, 15-km EnKF ICs, GEFS ICs, and blended 3-km ICs,

respectively, and darker shadings indicate intersections of two or

more ensemble envelopes. Values on the x axis represent ending

forecast hours of 1-h accumulation periods (e.g., an x-axis value of

24 is for 1-h accumulated precipitation between 23 and 24 h). ST4

data during the 0–12- and 24–36-h forecast periods were identical

except for 1 day (the former included data between 0000 and

1200 UTC 25 Apr–20 May while the latter instead included data

between 0000 and 1200 UTC 26 Apr–21 May), and because

domain-total ST4 precipitation between 0000–1200 UTC 21 May

was much larger than that between 0000 and 1200 UTC 25 Apr,

average 24–36-h domain-total ST4 precipitation was greater than

average 0–12-h domain-total ST4 precipitation.
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statistically significant at the 95% level (e.g., Hamill 1999;

Wolff et al. 2014).

1) ATTRIBUTES STATISTICS AND RANK HISTOGRAMS

To assess calibration, attributes diagrams (Wilks 2011)

were produced with forecast probability bins of 0%–

5%, 5%–15%, 15%–25%, . . . , 85%–95%, and 95%–100%;

curves on the diagonal indicate perfect reliability. Varying

r changes sharpness and the resulting NEP distribution

(Schwartz and Sobash 2017), which in turn impacts reli-

ability. Over the 1–12- and 18–36-h forecast periods, the

smallest r yielding near-perfect reliability for any experiment

was r 5 90 km and r 5 125 km, respectively, so we focus on

reliability computed with those r.

Over the first 12 h for r 5 90 km, the ensemble initialized

from unblended 3-km EnKF analyses was statistically sig-

nificantly more reliable than the ensembles initialized from

GEFS and 15-km EnKF ICs, with the GEFS-initialized

ensemble having the worst reliability (Fig. 11). Conversely,

between 18 and 36 h for r 5 125 km, the GEFS-initialized

ensemble was regularly statistically significantly more re-

liable than the ensembles with unblended 15- and 3-km

EnKF ICs, and the ensemble with 15-km ICs usually had

comparable or better reliability than the ensemble with

unblended 3-km ICs (Fig. 12). Except for the 99.9% threshold,

all ensembles had skill with respect to forecasts of sample

climatology.

These findings suggest aspects of GEFS ICs were bene-

ficial for next-day (18–36-h) forecasts, which motivated

blending GEFS and EnKF initial states. Indeed, blended

3-km ICs led to 18–36-h forecasts with comparable or

better reliability as GEFS-initialized forecasts and statis-

tically significantly better reliability than the ensemble with

unblended 3-km ICs (Fig. 12). Over the first 12 h, differences

between the ensembles with blended and unblended 3-km ICs

were also often statistically significant, suggesting that blend-

ing can additionally improve short-term forecast reliabil-

ity (Fig. 11).

Rank histograms (e.g., Hamill 2001) based on domain-total

precipitation (e.g., Schwartz et al. 2014, 2020) corroborated

FIG. 8. Fractional areal coverage (%) of 1-h accumulated precipitationmeeting or exceeding (a) 1.0, (b) 2.5, (c) 5.0, (d) 10.0, (e) 25.0, and

(f) 50.0mmh21 over the verification region (CONUS east of 1058W), computed on native grids and aggregated over all twenty-six 3-km

forecasts as a function of forecast hour. Red, blue, gold, and black shadings represent envelopes of the 10 members comprising the

ensembles with 3-km EnKF ICs, 15-km EnKF ICs, GEFS ICs, and blended 3-km ICs, respectively, and darker shadings indicate

intersections of two or more ensemble envelopes. Values on the x axis represent ending forecast hours of 1-h accumulation periods (e.g.,

an x-axis value of 24 is for 1-h accumulated precipitation between 23 and 24 h).
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attributes statistics. Specifically, over the first 12 h, bin counts

in the ensemble with unblended 3-km ICs were closer to op-

timal in most bins compared to those for the ensembles with

GEFS and 15-kmEnKF ICs (Fig. 13a), which was quantified by

the smaller-is-better reliability index (RI; Delle Monache et al.

2006). Blended 3-km ICs yielded slightly lower 1–12-h RIs than

unblended 3-km ICs, but the difference was small compared to

that between 18 and 36 h (Fig. 13b), where rank histograms and

RIs indicated more observations fell within the ensemble and

dispersion was improved when GEFS initial states were either

FIG. 9. The 1-h accumulated precipitation (mm) for (left) 1-, (center) 2-, and (right) 3-h forecasts initialized at 0000 UTC 1 May 2017

from member 1 of the 3-km ensembles with (a)–(c) unblended 3-km EnKF ICs and (d)–(f) blended 3-km ICs (using a 960-km cutoff

length). (g)–(i) Corresponding ST4 analyses, with gray-shaded areas denoting no data. Annotated circles correspond to features noted

in the text.
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used as standalone ICs or combined with 3-km EnKF analyses

through blending.

2) SPREAD AND SPECTRA

Improved reliability and rank histograms engendered by

GEFS and blended 3-km ICs was associated with increased

ensemble spread. In particular, the ensembles with GEFS and

blended 3-km ICs had statistically significantly more 24–30-h

precipitation spread compared to the ensembles with unblended

EnKF ICs (Fig. 14). Additionally, blended 3-km ICs led to sig-

nificantlymore spread thanunblended 3-km ICs over the first 6 h

that may have improved reliability statistics and rank histo-

grams, even though this enhanced spread reflected excessive

early precipitation (e.g., Figs. 7–9). The greater spread through

;18h in the ensembles with GEFS and 15-km ICs relative to

that from the ensemble with unblended 3-km ICs may reflect a

substantial contribution from the small, yet intense precipitation

entities that were more numerously predicted when forecasts

had downscaled, rather than 3-km, ICs (Figs. 8c–f and 10d–f).

To further understand spread characteristics, perturbation

power spectra were computed with the discrete cosine trans-

form (Denis et al. 2002), which is well suited for obtaining

spectra from limited-area models. Perturbation spectra were

determined with respect to the ensemble mean over the entire

3-km domain except for the 15 points nearest each lateral

boundary. Final spectra were averaged over all 10 perturba-

tions and 26 forecasts.

At 1 h, 500-hPa perturbation kinetic energy (PKE) in the

ensemble with blended 3-km ICs broadly followed PKEs of the

GEFS-initialized ensemble at scales . 500km and the ensemble

with unblended 3-km ICs at smaller scales, reflecting the blending

procedure (Fig. 15a). Compared to the GEFS-initialized en-

semble, the ensemble with unblended 3-km ICs had more 1-h

forecast PKE at most scales (Fig. 15a), with enhanced large-

scale power possibly reflecting upscale error growth with time

through the continuous 3-km DA cycles. But, PKE in the

GEFS-initialized ensemble grew fastest between 3 and 6 h

(Figs. 15b,c) and was largest at all scales after 6 h (Figs. 15d–f),

FIG. 10. Average physical thresholds (mmh21) over all twenty-six 3-km forecasts of 1-h accumulated precipitation corresponding to the

(a) 90th, (b) 95th, (c) 97.5th, (d) 99th, (e) 99.5th, and (f) 99.9th percentile thresholds as a function of forecast hour. The physical thresholds

were computed separately for each day and 1-h forecast period on the ST4 grid over the verification region (CONUS east of 1058W) and

averaged to obtain the y-axis values. Red, blue, gold, and black shadings represent envelopes of the 10members comprising the ensembles

with 3-km EnKF ICs, 15-km EnKF ICs, GEFS ICs, and blended 3-km ICs, respectively, and darker shadings indicate intersections of

two or more ensemble envelopes. Values on the x axis represent ending forecast hours of 1-h accumulation periods (e.g., an x-axis value

of 24 is for 1-h accumulated precipitation between 23 and 24 h).
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while unblended 3-km ICs yielded the least 12–36-h PKE at

scales . 100 km. Thus, more robust large-scale perturbation

growth and kinetic energy in the GEFS-initialized ensemble

was associated with its superior 18–36-h forecast reliability and

rank histograms relative to the ensembles with unblended

EnKF ICs. However, blending GEFS ICs with 3-km EnKF

analyses promoted large-scale PKE growth after 6 h, and by

24–36 h, the ensembles initialized fromGEFS and blended 3-km

ICs had comparable large-scale PKEs, indicating blending

successfully recovered these apparently favorable large-scale

spectral characteristics that benefited reliability statistics and

rank histograms.

3) FRACTIONS SKILL SCORES

Forecast skill was further evaluated with the fractions skill

score (FSS; Roberts and Lean 2008), where FSS5 1 indicates a

perfect forecast and FSS 5 0 means no skill. We present FSSs

for r 5 100 km, although conclusions were unchanged when

FIG. 11. Attributes statistics computed over the verification region (CONUS east of 1058W) with a 90-km neighborhood length scale

aggregated over all twenty-six 1–12-h 3-km forecasts of 1-h accumulated precipitation for the (a) 90th, (b) 95th, (c) 97.5th, (d) 99th,

(e) 99.5th, and (f) 99.9th percentile thresholds. Horizontal lines near the x axis represent observed frequencies of the event (sample

climatology) and diagonal lines are lines of perfect reliability. Points lying in gray-shaded regions had skill compared to forecasts of sample

climatology asmeasured by the Brier skill score (Brier 1950;Wilks 2011). Values were not plotted for a particular bin if fewer than 500 grid

points had forecast probabilities in that bin over the verification region and all 26 forecasts. Symbols along the top axis denote those

probability bins where differences between two ensembles were statistically significant at the 95% level, with the five rows of colored

symbols corresponding to the five comparisons in the legend to denote which ensemble was statistically significantly closest to perfect

reliability. For example, in the top row, red symbols indicate the ensemble with 3-km EnKF ICs had statistically significantly better

reliability than the ensemble with 15-km EnKF ICs, while blue symbols indicate the ensemble with 15-km EnKF ICs had statistically

significantly better reliability than the ensemble with 3-km EnKF ICs. Absence of a symbol means the differences were not statistically

significant at the 95% level. Note that the attributes diagrams themselves stop at 100%; area above 100% was added to make room for

statistical significance markers.
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FSSs were computed with different neighborhood length

scales. Moreover, areas under the relative operating char-

acteristic curve (Mason 1982; Mason and Graham 2002)

provided identical conclusions as FSSs and are not discussed

further.

Forecasts initialized from unblended 3-km EnKF analyses

had higher FSSs than those initialized from downscaled 15-km

EnKF analyses through 6–12 h, both when aggregated over all

forecasts (Fig. 16) and on an hour-by-hour basis (Figs. 17a–d),

with many instances of significant differences. However, after

6–12 h, the ensembles with unblended 15- and 3-km EnKF ICs

usually had statistically indistinguishable FSSs. Compared

to the GEFS-initialized ensemble, the unblended EnKF-

initialized ensembles had statistically significantly higher

aggregate FSSs through 12–18 h but comparable or lower

aggregate FSSs thereafter (Fig. 16), similar to attributes

statistics. These 1–12-h forecast benefits from unblended

3-km EnKF ICs compared to GEFS ICs were evident for most

hourly forecasts (Figs. 17i–l), while individual 1-h accumulated

precipitation forecasts over the 18–36-h period from the en-

semble with GEFS ICs were frequently comparable to or

better than those from the ensemble with unblended 3-km

EnKF ICs (Figs. 17m–p).

Blended 3-km ICs led to FSSs mirroring those from un-

blended 3-km EnKF ICs over the first 12–18 h (Fig. 16),

indicating blending preserved short-term forecast benefits

of increased analysis resolution for spatial placement.

Furthermore, after 18–24 h, the ensemble with blended 3-km

ICs had higher FSSs than the ensemble with unblended 3-km

EnKF ICs both on an hourly basis (Figs. 17e–h) and in ag-

gregate that were similar to or higher than FSSs from the

GEFS-initialized ensemble.

4) SYNTHESIS

FSSs, attributes statistics, and rank histograms revealed

clear benefits of convection-allowing analyses compared

to convection-parameterizing analyses for 1–12-h pre-

cipitation forecasts, consistent with previous work (e.g.,

FIG. 12. As in Fig. 11, but statistics were aggregated over all twenty-six 18–36-h, 3-km forecasts of 1-h accumulated precipitation using a

125-km neighborhood length scale.
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Johnson et al. 2015; Johnson and Wang 2016; Schwartz

2016; Gustafsson et al. 2018). But, these improvements

from convection-allowing ICs did not persist to next-day

forecast ranges, where GEFS-initialized forecasts out-

performed EnKF-initialized forecasts. However, blended

3-km ICs led to similar or better 18–36-h forecasts than

GEFS ICs, suggesting that blending large-scale fields from a

global model with convection-allowing EnKF analyses can

improve next-day CAE forecast dispersion, skill, and reliabil-

ity while preserving short-term forecast benefits of increased

IC resolution. Thus, when considering all forecast ranges,

blending yielded initial ensembles that produced the best

probabilistic forecasts.

c. Impact of hourly radar DA

Because our 3-km EnKF was highly constrained, we

wondered whether assimilating radar observations could

realize meaningful analysis and forecast improvements. So,

to assess the impact of assimilating radar reflectivity obser-

vations, another EnKF was configured exactly as the nested

15-/3-km EnKF DA system (section 2b), except reflectivity

observations throughout the CONUS were assimilated into

3-km analyses along with conventional observations hourly

from 1900 to 0000 UTC. Although reflectivity observations

could easily be assimilated more frequently in our frame-

work, hourly radar DA mimics the HRRRE configuration.

Backgrounds for 1900 UTC radar-assimilating EnKF analyses

were provided by 1-h forecasts initialized from 1800 UTC pos-

terior ensembles from the nested 15-/3-km EnKF assimilating

solely conventional observations. Thus, the impact of as-

similating reflectivity observations was confined to a 6-h

period each day. This approach was adopted primarily to

avoid the expense of continuously cycling another 3-km

EnKF over the entire 4-week period. However, assimilating

radar observations for just a few hours was methodologically

consistent with numerous other high-resolution DA sys-

tems, including the WoF system (e.g., Wheatley et al. 2015;

Jones et al. 2016; Skinner et al. 2018), and 6 h of assimilating

FIG. 13. Rank histograms containing all twenty-six 3-km (a) 1–12- and (b) 18–36-h forecasts of domain-total 1-h

accumulated precipitation on the ST4 grid over the verification region (CONUS east of 1058W) for the various

ensembles. Horizontal lines are optimal values, and the reliability index (RI; Delle Monache et al. 2006) is an-

notated for each ensemble in the legend; lower values are better and indicate flatter rank histograms.

FIG. 14. Average ensemble variance (mm2) over the verification

region (CONUS east of 1058W) and all twenty-six 3-km forecasts of

1-h accumulated precipitation as a function of forecast hour. Values

on the x axis represent ending forecast hours of 1-h accumulation

periods (e.g., an x-axis value of 24 is for 1-h accumulated precipita-

tion between 23 and 24 h). Symbols along the top axis indicate

forecast hours when differences between two ensembles were sta-

tistically significant at the 95% level as in Fig. 11 and denote the

ensemble with statistically significantly higher variance.
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radar observations was more than sufficient to assess the

data impact (e.g., Johnson and Wang 2017 and references

therein).

Specific radar DA configurations mostly followed Duda

et al. (2019) and references therein (Table 4), and like the other

EnKFs, 0000 UTC analysis ensembles initialized 36-h, 3-km,

10-member CAE forecasts. Furthermore, to examine the in-

terplay of blending and radar DA, we also created a set of ICs

by blending GEFS ICs with radar-assimilating 3-km EnKF

analyses using a 960-km filter cutoff.

Assimilating reflectivity observations generally im-

proved FSSs over the first 3 h but had small impacts

thereafter (Fig. 18), similar to other studies finding short-

lived benefits of radar DA (e.g., Kain et al. 2010; Johnson

et al. 2015; Fabry and Meunier 2020). Within the radar-

assimilating experiments, blending boosted FSSs at later

times, as with the nonradar DA experiments. Assimilating

reflectivity observations negligibly impacted attributes

statistics, although assimilation of 100 000–200 000 radar

observations each cycle lessened precipitation spread

over the first hour (not shown). While more frequent

assimilation cycles could potentially realize additional

improvements from radar DA, it is unlikely that the small-

scale information from radar observations can consis-

tently yield forecast improvements after the shortest

forecast ranges, especially in an EnKF highly constrained

by other observations. Nonetheless, these experiments sug-

gest feasibility of performing radar-assimilating, WoF-like

analyses over large domains in a continuously cycling

EnKF DA framework.

5. Summary and conclusions

EnKF DA systems with 80 members and 15- and 3-km

horizontal grid spacings were continuously cycled with a

1-h period for 4 weeks over a computational domain

spanning the entire CONUS. Both the 15- and 3-km EnKFs

had stable climates throughout the cycling period and ac-

ceptable prior observation-space statistics, demonstrat-

ing the viability of a convection-allowing continuously

cycling EnKF over the CONUS. However, our EnKFs

were highly constrained by observations, and whether

convection-allowing EnKFs can be continuously cycled

without deleterious consequences over large data-sparse

domains is unclear.

At 0000 UTC, EnKF analyses initialized 36-h, 10-member

CAE forecasts with 3-km horizontal grid spacing that were

evaluated with a focus on precipitation. CAE forecasts

were also initialized from NCEP’s operational GEFS and

‘‘blended’’ ICs produced by using a low-pass filter to

combine large scales from GEFS ICs with small scales from

EnKF analysis members. Precipitation forecasts initialized

from continuously cycling EnKF analyses outperformed

GEFS-initialized forecasts through 12–18 h, and benefits

from initializing 3-km forecasts from corresponding 3-km

analyses, rather than downscaled 15-km analyses, were

FIG. 15. Average 500-hPa perturbation kinetic energy (m2 s22) as a function of wavelength (km) computed from all 26 (a) 1-, (b) 3-,

(c) 6-, (d) 12-, (e) 24-, and (f) 36-h 3-km, 10-member ensemble forecasts over the entire 3-km domain, excluding the 15 grid points nearest

each lateral boundary. Perturbations were computed with respect to the ensemble mean, and the spectra were averaged over all 10

perturbations and 26 forecasts. Dashed vertical lines denote 6 times the horizontal grid spacing (3 km), the approximate effective reso-

lution of the forecasts (Skamarock 2004). The discrete cosine transform was used to perform the spectral analysis, and spectral variance

binning employed the method of Ricard et al. (2013).
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realized through 6–12 h. But, after 18 h, GEFS-initialized

forecasts were comparable to or better than EnKF-initialized

forecasts, indicating limitations of limited-area continu-

ously cycling EnKFs as initialization tools for next-day

CAE precipitation forecasts, consistent with Schwartz

et al. (2020). Benefits of assimilating radar reflectivity ob-

servations into the 3-km EnKF were confined solely to 1–3-h

forecasts.

Although blending sometimes degraded precipitation

climatologies over the first 12 h, forecasts initialized from

blended 3-km ICs reflected the respective strengths of both

GEFS and 3-km EnKF ICs. Specifically, through 12–18 h,

forecasts initialized from blended 3-km ICs had similar or

better skill, reliability, and dispersion than those initialized

from unblended 3-km EnKF analyses, while after 18–24 h,

forecasts with blended 3-km ICs were comparable to or better

than those with GEFS ICs. Therefore, blending produced ICs

yielding the best performance when considering the entire 36-h

forecast, indicating how combining large-scale global fields

with high-resolution, limited-area EnKF analyses can poten-

tially unify short-term WoF-like and next-day CAE guidance

systems under a common framework.

There are many avenues for additional research and im-

provements. For example, while using identical inflation fac-

tors and observation errors in the 15- and 3-km EnKFs

provided reasonable results, these choices may have been

suboptimal. In particular, because observation errors are the

sum of measurement and representativeness errors and

representativeness errors are resolution dependent (e.g., Ben

Bouallegue et al. 2020), observation errors should arguably be

FIG. 16. Fractions skill scores (FSSs) over the verification region (CONUS east of 1058W) with a 100-km neighborhood length scale for

the (a) 90th, (b) 95th, (c) 97.5th, (d) 99th, (e) 99.5th, and (f) 99.9th percentile thresholds aggregated over all twenty-six 3-km forecasts of

1-h accumulated precipitation as a function of forecast hour. Values on the x axis represent ending forecast hours of 1-h accumulation

periods (e.g., an x-axis value of 24 is for 1-h accumulated precipitation between 23 and 24 h). The y-axis scales are different in each panel.

Symbols along the top axis indicate forecast hours when differences between two ensembles were statistically significant at the 95% level

as in Fig. 11 and denote the ensemble with statistically significantly higher FSSs. Note that the maximum FSS is 1.0; the area above 1.0 was

added to make room for statistical significance markers.
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tuned for each domain, which, in turn, might require adjusting

inflation factors. Thus, it may be possible to further improve

our 3-km EnKF.

Additionally, our blending procedure did not impact the

continuously cycling EnKF DA systems, and future work might

assess whether incorporating large scales from global analyses

into hourly limited-area DA cycles is beneficial. Furthermore,

blending could potentially be optimized by dynamically

determining the filter cutoff scale (e.g., Feng et al. 2020) or

using height- and variable-specific cutoffs (e.g., Zhang et al.

2015), and efforts to mitigate blending-induced initial im-

balances tailored for high-resolution models are needed.

Moreover, next-day forecast benefits of blending suggest fur-

ther exploring the value of mixed-resolution ensemble-based

DA systems for convective applications may be worthwhile.

Also, blending and partial cycling DA approaches should be

compared; while both methods introduce external large-scale

information into limited-area ICs, whether either method is

FIG. 17. (a)–(d) Histogram [expressed as probabilities (%)] of FSS differences with r5 100 km between the ensembles with 3-km

EnKF ICs and 15-km EnKF ICs (3-km ICs minus 15-km ICs) computed from all twenty-six 0–1-, 1–2-, . . . , 10–11-, and 11–12-h 3-km

forecasts of 1-h accumulated precipitation for the (a) 90th, (b) 95th, (c) 99th, and (d) 99.9th percentile thresholds. (e)–(h) As in

(a)–(d), but for differences from all twenty-six 18–19-, 19–20-, . . . , 34–35-, and 35–36-h 3-km forecasts of 1-h accumulated pre-

cipitation between the ensembles with blended and unblended 3-km ICs (blended 3-km ICs minus unblended 3-km ICs). (i)–(l),

(m)–(p) As in (a)–(d) and (e)–(h), respectively, but for differences between the ensembles with unblended 3-km EnKF and GEFS ICs

(3-km ICs minus GEFS ICs). Values on the x axis denote the leftmost points of each bin, and bin widths were 0.025 (e.g., the bars with

left edges at 0.05 are for bins spanning 0.05–0.075). Colors of the bars correspond to the legend and indicate the experiment with the

higher FSS in that bin.
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preferable is unclear. It is also important to note that our

blending methodology [Eq. (1)] changed the large-scale com-

ponent of both the IC perturbations and the initial ensemble

mean state, differing from an approach of blending perturba-

tions derived from two different ensembles without changing

the spectral representation of the initial ensemble mean (e.g.,

Caron 2013). Therefore, we cannot determine whether the

18–36-h forecast improvements from blending were due to

altering the large-scale IC perturbations or large-scale initial

ensemble mean, and it would be interesting to refine attribu-

tion in future work.

Finally, computing availability limited our cycling period

to just 4 weeks, and additional experimentation is needed

over longer periods, different seasons, and varied geographic

TABLE 4. Settings for assimilation of radar reflectivity observations.

Radar observation source Three-dimensionalMulti-RadarMulti-Sensor (MRMS; Smith et al. 2016) reflectivity

mosaic valid at the top of the hour

Horizontal localization full width 18 km

Vertical localization full width 0.5 scale heights

Observation error standard deviation 5.0 dBZ

Outlier check 3(s2
f 1s2

o)
1/2
, where sf is the prior ensemble standard deviation at the observation

location and so is the observation error standard deviation (5.0 dBZ)

Observation operator Interpolate diagnosed reflectivity from the Thompson microphysics scheme to

observation locations within DART

Excluded observations 0–10 dBZ

Assimilation of nonprecipitation observations Reflectivity observations , 0.0 dBZ reset to 0.0 dBZ and assimilated

Minimum allowed forward operator value 0.0 dBZ; priors , 0.0 dBZ reset to 0.0 dBZ

FIG. 18. As in Fig. 16, but for comparisons focusing on the impact of assimilating radar reflectivity observations and aggregated over

24, rather than 26, forecasts (necessitated due to missing radar observations that precluded radar data assimilation sensitivity experiments

for the forecasts initialized at 0000 UTC 13 and 14 May 2017). Gray curves are often beneath the black curves, especially in (a) and (b).
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regions to further understand large-domain convection-

allowing continuously cycling EnKF performance and whether

benefits of blending are regime- and location-dependent.

Nonetheless, this work suggests a combination of blending

and high-resolution EnKF DA may represent a promising

pathway toward an operational ensemble-based convection-

allowing analysis–forecast system suitable for both nowcasting

and next-day prediction over the CONUS.
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